Mobility Estimation Based on an Autoregressive Model
نویسندگان
چکیده
We propose an integrated scheme for estimating the mobility state and model parameters of a user based on a first-order autoregressive model of mobility that accurately captures the characteristics of realistic user movements in wireless networks. Estimation of the mobility parameters is performed by applying the Yule-Walker equations to the training data. Estimation of the mobility state, which consists of the position, velocity, and acceleration of the mobile station is accomplished via an extended Kalman filter using measurements from the wireless network. The integration of mobility state and model parameter estimation results in an efficient and accurate real-time mobility tracking scheme that can be applied in a variety of wireless networking applications. The mobility estimation scheme can also be used to generate realistic mobility patterns to drive computer simulations of mobile networks. We validate the proposed mobility estimation scheme using mobile trajectories collected from drive-test data obtained from a live cellular network.
منابع مشابه
Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملModel Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملTwo-stage Procedure in P-Order Autoregressive Process
In this paper, the two-stage procedure is considered for autoregressive parameters estimation in the p-order autoregressive model ( AR(p)). The point estimation and fixed-size confidence ellipsoids construction are investigated which are based on least-squares estimators. Performance criteria are shown including asymptotically risk efficient, asymptotically efficient, and asymptotically consist...
متن کاملStructure of Wavelet Covariance Matrices and Bayesian Wavelet Estimation of Autoregressive Moving Average Model with Long Memory Parameter’s
In the process of exploring and recognizing of statistical communities, the analysis of data obtained from these communities is considered essential. One of appropriate methods for data analysis is the structural study of the function fitting by these data. Wavelet transformation is one of the most powerful tool in analysis of these functions and structure of wavelet coefficients are very impor...
متن کاملConditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model
‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...
متن کامل